Modeling Residential Electricity Consumption Function in Malaysia: Time Series Approach

نویسنده

  • L. L.
چکیده

As the Malaysian residential electricity consumption continued to increase rapidly, effective energy policies, which address factors affecting residential electricity consumption, is urgently needed. This study attempts to investigate the relationship between residential electricity consumption (EC), real disposable income (Y), price of electricity (Pe) and population (Po) in Malaysia for 1978-2011 period. Unlike previous studies on Malaysia, the current study focuses on the residential sector, a sector that is important for the contemplation of energy policy. The Phillips-Perron (P-P) unit root test is employed to infer the stationarity of each variable while the bound test is executed to determine the existence of co-integration relationship among the variables, modelled in an Autoregressive Distributed Lag (ARDL) framework. The CUSUM and CUSUM of squares tests are applied to ensure the stability of the model. The results suggest the existence of long-run equilibrium relationship and bidirectional Granger causality between EC and the macroeconomic variables. The empirical findings will help policy makers of Malaysia in developing new monitoring standards of energy consumption. As it is the major contributing factor in economic growth and CO2 emission, there is a need for more proper planning in Malaysia to attain future targets in order to cut emissions. Keywords—Co-integration, Elasticity, Granger causality, Malaysia, Residential electricity consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

02 Residential Electricity Demand Management Through Tariff Structure: Agent-based Modeling

Recently, imbalances in the electricity production and consumption in Iran, have caused critical situations at specific times of the year; meanwhile, the residential sector, with a 51 percent share, is the main reason for peak demand crisis. According to the international experiences, it can be hoped that by revising the residential electricity tariff structure, consumption pattern in this sect...

متن کامل

02 Residential Electricity Demand Management Through Tariff Structure: Agent-based Modeling

Recently, imbalances in the electricity production and consumption in Iran, have caused critical situations at specific times of the year; meanwhile, the residential sector, with a 51 percent share, is the main reason for peak demand crisis. According to the international experiences, it can be hoped that by revising the residential electricity tariff structure, consumption pattern in this sect...

متن کامل

Energy Consumption Modeling in Residential Buildings

In recent years, the issue of energy consumption modeling techniques in the building sector has been widely considered by researchers and managers. Researches indicate that energy consumption in residential sector is one of the main parts of the total consumption. Moreover, the urban residence is supposed as a significant consumer of energy in every country and therefore a focus for energy cons...

متن کامل

01 The conceptual design of the photovoltaic solar thermal collector hybrid system and the ground source heat pump to provide electricity, heating and cooling a residential building focusing on technical, economic and environmental parameters.

This paper attempts to present and compare four solar assisted ground source heat pump combined systems with series and parallel layouts and direct and indirect heat exchange in Zahedan in order to supply part of the electricity demand for equipment and selling surplus electricity to the grid as a source of project financing and revenue generation for residents, moreover, fulfill the region's n...

متن کامل

Forecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics

Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014